5 research outputs found

    [89Zr]Oxinate4 for long-term in vivo cell tracking by positron emission tomography

    Get PDF
    Purpose 111In (typically as [111In]oxinate3) is a gold standard radiolabel for cell tracking in humans by scintigraphy. A long half-life positron-emitting radiolabel to serve the same purpose using positron emission tomography (PET) has long been sought. We aimed to develop an 89Zr PET tracer for cell labelling and compare it with [111In]oxinate3 single photon emission computed tomography (SPECT). Methods [89Zr]Oxinate4 was synthesised and its uptake and efflux were measured in vitro in three cell lines and in human leukocytes. The in vivo biodistribution of eGFP-5T33 murine myeloma cells labelled using [89Zr]oxinate4 or [111In]oxinate3 was monitored for up to 14 days. 89Zr retention by living radiolabelled eGFP-positive cells in vivo was monitored by FACS sorting of liver, spleen and bone marrow cells followed by gamma counting. Results Zr labelling was effective in all cell types with yields comparable with 111In labelling. Retention of 89Zr in cells in vitro after 24 h was significantly better (range 71 to >90 %) than 111In (43–52 %). eGFP-5T33 cells in vivo showed the same early biodistribution whether labelled with 111In or 89Zr (initial pulmonary accumulation followed by migration to liver, spleen and bone marrow), but later translocation of radioactivity to kidneys was much greater for 111In. In liver, spleen and bone marrow at least 92 % of 89Zr remained associated with eGFP-positive cells after 7 days in vivo. Conclusion [89Zr]Oxinate4 offers a potential solution to the emerging need for a long half-life PET tracer for cell tracking in vivo and deserves further evaluation of its effects on survival and behaviour of different cell types

    PET Cell Tracking Using 18F-FLT is Not Limited by Local Reuptake of Free Radiotracer

    Get PDF
    Assessing the retention of cell therapies following implantation is vital and often achieved by labelling cells with 2'-[(18)F]-fluoro-2'-deoxy-D-glucose ((18)F-FDG). However, this approach is limited by local retention of cell-effluxed radiotracer. Here, in a preclinical model of critical limb ischemia, we assessed a novel method of cell tracking using 3'-deoxy-3'-L-[(18)F]-fluorothymidine ((18)F-FLT); a clinically available radiotracer which we hypothesise will result in minimal local radiotracer reuptake and allow a more accurate estimation of cell retention. Human endothelial cells (HUVECs) were incubated with (18)F-FDG or (18)F-FLT and cell characteristics were evaluated. Dynamic positron emission tomography (PET) images were acquired post-injection of free (18)F-FDG/(18)F-FLT or (18)F-FDG/(18)F-FLT-labelled HUVECs, following the surgical induction of mouse hind-limb ischemia. In vitro, radiotracer incorporation and efflux was similar with no effect on cell viability, function or proliferation under optimised conditions (5 MBq/mL, 60 min). Injection of free radiotracer demonstrated a faster clearance of (18)F-FLT from the injection site vs. (18)F-FDG (p ≤ 0.001), indicating local cellular uptake. Using (18)F-FLT-labelling, estimation of HUVEC retention within the engraftment site 4 hr post-administration was 24.5 ± 3.2%. PET cell tracking using (18)F-FLT labelling is an improved approach vs. (18)F-FDG as it is not susceptible to local host cell reuptake, resulting in a more accurate estimation of cell retention

    Synthesis and Characterisation of Zirconium Complexes for Cell Tracking with Zr-89 by Positron Emission Tomography

    No full text
    The increasing availability of the long half-life positron emitter Zr-89 (half life 78.4 h) suggests that it is a strong candidate for cell labelling and hence cell tracking using positron emission tomography. The aim was to produce a range of neutral ZrL4 lipophilic complexes for cell labelling which could be prepared under radiopharmaceutical conditions. This was achieved when the ligand was oxine, tropolone or ethyl maltol. The complexes can be prepared in high yield from zirconium(IV) precursors in hydrochloric or oxalic acid solution. The oxinate and tropolonate complexes were the most amenable to chromatographic characterisation, and HPLC and ITLC protocols have been established to monitor their radiochemical purity. The radiochemical synthesis and quality control of 89Zr(oxinate)4 is reported as well as preliminary cell labelling data for the oxinate, tropolonate and ethyl maltolate complexes which indicates that 89Zr(oxinate)4 is the most promising candidate for further evaluation
    corecore